

# Individualised cancer neoantigen vaccines: the promise and the challenges

#### Immuno-Oncology Summit, Vienna

#### October 3, 2018

Agnete Fredriksen, PhD President & CSO Vaccibody AS

abfredriksen@vaccibody.com

#### Agenda









### CheckPoint Inhibitors – relationship to neoantigens



#### **Cancer neoantigen vaccines** are the **optimal tool** to activate a truly specific, strong and broad neoantigen specific T cell responses



Strong relationship between mutational burden and response to

Limits response to already existing neoantigen-specific T cell

Reveals an important role of immune responses to neoantigens in cancer immunotherapy

#### The Workflow of Personalised Cancer Treatment





#### vaccibody

#### Time, cost, efficacy?

## Proof of Concept published in Nature Letters July 2017

doi:10.1038/nature22991

#### An immunogenic personal neoantigen vaccine for patients with melanoma

Patrick A. Ott<sup>1,2,3\*</sup>, Zhuting Hu<sup>1\*</sup>, Derin B. Keskin<sup>1,3,4</sup>, Sachet A. Shukla<sup>1,4</sup>, Jing Sun<sup>1</sup>, David J. Bozym<sup>1</sup>, Wandi Zhang<sup>1</sup>, Adrienne Luoma<sup>5</sup>, Anita Giobbie-Hurder<sup>6</sup>, Lauren Peter<sup>7,8</sup>, Christina Chen<sup>1</sup>, Oriol Olive<sup>1</sup>, Todd A. Carter<sup>4</sup>, Shuqiang Li<sup>4</sup>, David J. Lieb<sup>4</sup>, Thomas Eisenhaure<sup>4</sup>, Evisa Gjini<sup>9</sup>, Jonathan Stevens<sup>10</sup>, William J. Lane<sup>10</sup>, Indu Javeri<sup>11</sup>, Kaliappanadar Nellaiappan<sup>II</sup>, Andres M. Salazar<sup>12</sup>, Heather Daley<sup>1</sup>, Michael Seaman<sup>7</sup>, Elizabeth I. Buchbinder<sup>1,2,3</sup>, Charles H. Yoon<sup>3,13</sup>, Maegan Harden<sup>4</sup>, Niall Lennon<sup>4</sup>, Stacey Gabriel<sup>4</sup>, Scott J. Rodig<sup>9,10</sup>, Dan H. Barouch<sup>3,7,8</sup>, Jon C. Aster<sup>3,10</sup>, Gad Getz<sup>3,4,14</sup>, Kai Wucherpfennig<sup>3,5</sup>, Donna Neuberg<sup>6</sup>, Jerome Ritz<sup>1,2,3</sup>, Eric S. Lander<sup>3,4</sup>, Edward F. Fritsch<sup>1,4</sup>†, Nir Hacohen<sup>3,4,15</sup> & Catherine J. Wu<sup>1,2,3,4</sup>

- 6 patients with melanoma (stage III/IV)
- 97 neoepitopes delivered as long-peptides • with polyICLC (SC)
- CD4 dominated responses

#### Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer

Ugur Sahin<sup>1,2,3</sup>, Evelyna Derhovanessian<sup>1</sup>, Matthias Miller<sup>1</sup>, Björn-Philipp Kloke<sup>1</sup>, Petra Simon<sup>1</sup>, Martin Löwer<sup>2</sup>, Valesca Bukur<sup>1,2</sup>, Arbel D. Tadmor<sup>2</sup>, Ulrich Luxemburger<sup>1</sup>, Barbara Schrörs<sup>2</sup>, Tana Omokoko<sup>1</sup>, Mathias Vormehr<sup>1,3</sup>, Christian Albrecht<sup>2</sup>, Anna Paruzynski<sup>1</sup>, Andreas N. Kuhn<sup>1</sup>, Janina Buck<sup>1</sup>, Sandra Heesch<sup>1</sup>, Katharina H. Schreeb<sup>1</sup>, Felicitas Müller<sup>1</sup>, Inga Ortseifer<sup>1</sup>, Isabel Vogler<sup>1</sup>, Eva Godehardt<sup>1</sup>, Sebastian Attig<sup>2,3</sup>, Richard Rae<sup>2</sup>, Andrea Breitkreuz<sup>1</sup>, Claudia Tolliver<sup>1</sup>, Martin Suchan<sup>2</sup>, Goran Martic<sup>2</sup>, Alexander Hohberger<sup>3</sup>, Patrick Sorn<sup>2</sup>, Jan Diekmann<sup>1</sup>, Janko Ciesla<sup>4</sup>, Olga Waksmann<sup>4</sup>, Alexandra-Kemmer Brück<sup>1</sup>, Meike Witt<sup>1</sup>, Martina Zillgen<sup>1</sup>, Andree Rothermel<sup>2</sup>, Barbara Kasemann<sup>2</sup>, David Langer<sup>1</sup>, Stefanie Bolte<sup>1</sup>, Mustafa Diken<sup>1,2</sup>, Sebastian Kreiter<sup>1,2</sup>, Romina Nemecek<sup>5</sup>, Christoffer Gebhardt<sup>6,7</sup>, Stephan Grabbe<sup>3</sup>, Christoph Höller<sup>5</sup>, Jochen Utikal<sup>6,7</sup>, Christoph Huber<sup>1,2,3</sup>, Carmen Loguai<sup>3\*</sup> & Özlem Türeci<sup>8\*</sup>

- (intranodal)
- Vaccinating with neoepitopes elicits a broad and strong tumour-specific immune response
- Both peptide and RNA neoantigen based vaccines elicits predominantly CD4 T cell responses

Ott et al., Nature Letters 2017 Sahin et al., Nature Letters 2017



doi:10.1038/nature23003

#### 13 patients with melanoma (stage III/IV) 125 neoepitopes delivered as ivt-RNA

#### CD4 dominated responses

#### Agenda









### Vaccibody Product Pipeline

| PROGRAM                  | DISCOVERY         | <b>PRE-CLINICAL</b> | PHASE I |  |  |
|--------------------------|-------------------|---------------------|---------|--|--|
| Draconcercite            |                   |                     |         |  |  |
| cervical lesions         | VB C-01 (VB10.16) |                     |         |  |  |
|                          |                   |                     |         |  |  |
| MELANOMA<br>LUNG (NSCLC) |                   |                     |         |  |  |
| BLADDER                  | VB N-01 (VI       | <b>B10.NEO)</b>     |         |  |  |
| HEAD AND NECK            |                   |                     |         |  |  |
| HEAD AND NECK            |                   | NVTD-21/            | NEL     |  |  |
|                          | VDIUMEO 1         |                     |         |  |  |





## Vaccibody – Proprietary Vaccine Technology Platform

The Vaccibody Technology Platform was developed based on the concept of **targeting antigen to APC** in order to create more efficacious vaccines.





Target to Antigen Presenting Cell

Dimerization for crosslinking target receptor

**Antigen moiety** 

#### Mechanism of Action – Intrinsic Adjuvant





#### Patient Friendly, simple Vaccine Delivery





#### Naked DNA plasmid as IMP



DNA plasmid is an ideal platfrom for bringing individualized neoantigen vaccines to the market as a viable product

#### vaccibody

#### VB10.NEO – A Robust Vaccine Format



VB10.NEO-X

VB10.NEO-XX

>90 different VB10.NEO constructs with >450 neoepitopes constructed to date with up to 40 neoepitopes





VB10.NEO-XD

#### Vaccibody VB10.NEO induces Rapid, Broad and Strong responses to multiple Neoepitopes by single Vaccination

- VB10.NEO induces a broader and stronger
  response than Peptide + Poly (I:C) Adjuvant
  vaccines after a single immunization.
- VB10.NEO vaccinated animals respond to all 10 neoepitopes after a single immunization.
- Immunodominant neoepitopes differ between delivery vehicles



#### Vaccibody VB10.NEO generates a broader immune response profile dominated by CD8<sup>+</sup> T cells than competing technologies

|          | _   | Pep 1 | Pep 2 | Рер З | Pep 4 | Pep 5 | Рер б |
|----------|-----|-------|-------|-------|-------|-------|-------|
| Peptide* | CD4 |       |       |       |       |       |       |
|          | CD8 |       |       |       |       |       |       |
|          |     |       |       |       |       |       |       |
| RNA*     | CD4 |       |       |       |       |       |       |
|          | CD8 |       |       |       |       |       |       |
|          |     |       |       |       |       |       |       |
| VB10.NEO | CD4 |       |       |       |       |       |       |
|          | CD8 |       |       |       |       |       |       |

\* Tested IFN-γ CD4 and CD8 T cell response against 10 identical neoepitopes from B16 melanoma

## Peptide and RNA vaccines induces primarily CD4 T cell responses, while VB10.NEO induces strong, dominating CD8 responses to the identical neoepitope sequences



### VB10.NEO leads to a unique CD8 dominated neoepitope response

VB10.NEO induces a **strong**, **broad** immune response dominated by CD8+ T cells



#### VB10.NEO induces strong, dominantly CD8+ T cell response to identical neoepitopes that induces **no or weak** immune response if delivered as peptide vaccine

\* Castle et al., 2012 and Kreiter et al., 2015-adapted figure based on B16 melanoma results



#### Peptide + poly I:C vaccination has been reported to induce dominantly CD4 T cell responses

## Confirmation of VB10.NEO's unique ability to induce strong neoepitope-specific CD8 responses



-VB10.NEO induces a strong CD8 T cell response, combined with a CD4 T cell response to all peptides tested for MC38 colon carcinoma.

-1/3 of these neoepitopes have been shown to be non-immunogenic delivered as peptide + adjuvant -Confirmation of VB10.NEO's ability to induce stronger CD8 responses to neoantigens

Yadav et al., 2014

vaccibody

### Vaccibody Induces Tumor Protection as Monotherapy



>Vaccibody vaccination induces strong CD8+ T cell responses and tumor protection as Monotherapy >Combination with anti-PD-1 immunotherapy induced enhanced anti-tumour responses in mice involving **complete tumour regression** of large, established tumours > Long-term memory responses ensure effective anti-tumour responses after a 2<sup>nd</sup> tumour challenge in surviving mice with no sign of tumour growth

#### vaccibody

#### Neoepitope-specific CD8 T cells are crucial for tumour protection



## Depletion of CD8 T cells prohibit tumour protection in VB10.NEO vaccinated mice, indicating a crucial role of neoepitope-specific CD8 T cells for anti-tumour efficacy



#### Agenda





2.

NeoSELECT™





#### Developing VB10.NEO specific Neoepitope Selection





#### Agenda





2.





### Vaccibody Product Pipeline

| PROGRAM                  | DISCOVERY         | <b>PRE-CLINICAL</b> | PHASE I |  |  |
|--------------------------|-------------------|---------------------|---------|--|--|
| Draconcercite            |                   |                     |         |  |  |
| cervical lesions         | VB C-01 (VB10.16) |                     |         |  |  |
|                          |                   |                     |         |  |  |
| MELANOMA<br>LUNG (NSCLC) |                   |                     |         |  |  |
| BLADDER                  | VB N-01 (VI       | <b>B10.NEO)</b>     |         |  |  |
| HEAD AND NECK            |                   |                     |         |  |  |
| HEAD AND NECK            |                   | NVTD-21/            | NEL     |  |  |
|                          | VDIUMEO 1         |                     |         |  |  |





## Strong, long-lasting immune responses elicited to HPV16, VB C-01



- The vaccination regiment from cohort 1 (week 0, 3 and 6) plus a booster vaccination at W16 was introduced in phase IIa
- 16 of 17 patients (94%) from phase IIa elicited increased HPV16-specific T cell responses after vaccination with VB10.16.
  - Rapid, strong and long-lasting



## Clinical Trial VB N-01

**VB N-01**: An open labelled first human dose phase 1/2a study to evaluate safety, feasibility and efficacy of multiple dosing with individualised VB10.NEO immunotherapy in patients with locally advanced or metastatic melanoma, NSCLC, clear renal cell carcinoma, urothelial cancer or squamous cell carcinoma of head and neck, who did not reach complete responses with current standard of care immune checkpoint blockade

#### FPI April 2018





## Study Design and Treatment Schedule VB N-01





### Vaccibody's Solution to Personalised Cancer Treatment





# Vaccibody



www.vaccibody.com