vaccibody

Webcast

July 12, 2021

Non-Confidential

Forward-looking statement

This announcement and any materials distributed in connection with this presentation may contain certain forwardlooking statements. By their nature, forward-looking statements involve risk and uncertainty because they reflect the company's current expectations and assumptions as to future events and circumstances that may not prove accurate.

A number of material factors could cause actual results and developments to differ materially from those expressed or implied by these forward-looking statements.

Today's presenters from Vaccibody and Adaptive Biotechnologies

Chief Executive Officer Vaccibody Michael Engsig

M.Sc. Biochemistry and G.D.Bus.Admin.

- Extensive experience from leading early-stage drug discovery through commercial development
- Launched products across all major geographical areas.
- Takeda and Nycomed, PPD

vaccibody

Chief Innovation & Strategy Officer, Vaccibody Agnete B. Fredriksen

M.Sc. in Molecular Biology and Ph.D. in Immunology

- Designed and created the first Vaccibody™ molecules
- Co-founder of Vaccibody AS (2007)
- Served as CSO 2007-2021, leading the scientific strategy

Chief Scientific Officer Vaccibody Mikkel W. Pedersen

M.Sc. in Human Biology and Ph.D. in Cancer Biology

- Long experience in drug discovery and development
- Previous role as CSO of Symphogen, now a subsidiary of Servier
 - Non-Confidential

Chief Medical Officer Vaccibody Siri Torhaug

MD, Oncology specialist

More than 20 years experience within Clinical development and pharma scientific and medical affairs:

- Oslo university hospital
- Novartis
- AstraZeneca

Chief Scientific Officer, Adaptive Biotechnologies Harlan Robins

B.Sc. and Ph.D. in Physics

 Prior to co-founding Adaptive, Harlan served in various roles in the Computational Biology Program at Fred Hutch, including as a Full Member and the Head of the program from April 2016 to June 2019.

Agenda

Collaboration and license agreement with Adaptive Biotechnologies

Adaptive Biotechnologies' technology platform

- VB10.COV2 Vaccibody's SARS-CoV-2 vaccine program
- VB10.COV2 Phase I trial preparations
- VB10.NEO N-02 update, outlook and Q&A

2

3

4

5

Overview of Vaccibody

• Leading vaccine platform taking advantage of differentiated technology to address a broad range of diseases

• "targeting antigens to antigen presenting cells, generating unique rapid, strong and long-lasting immune response"

• Highly advanced oncology pipeline with two Phase 2 assets including VB10.NEO, an individualized vaccine targeting tumor specific epitopes, as well as VB10.16, an off the shelf vaccine

• Significant collaboration with Genentech to support development of key oncology assets

• 2-arm COVID-19 vaccine strategy focused on providing protection against current and future Variants of Concern

- Collaboration with Adaptive Biotechnologies to generate broadly protective T cell based immunity against multiple SARS-CoV-2 antigens
- Highly experienced management team with track record of success

vaccibody

5

Adaptive Biotechnologies - Vaccibody collaboration and license agreement

- Exclusive license to COVID-19 vaccines based on Adaptive's set of validated shared T cell epitopes
- Vaccibody leads development, manufacture and commercialization of the vaccine products
- Clinical trial with second-generation SARS-CoV-2 RBD as well as T cell based vaccine candidates, planned for Q4 2021

Unmet need for COVID-19 intervention

Is there cause for concern?

Genetic variants of SARS-CoV-2 continues to emerge

- A decline in efficacy is observed over time
- Continued emergence of variants are expected
 Increased transmissibility and/or infectivity
 Reduced sensitivity to antibody-based immunity

Current variants of concern (VoC) include

- Alfa B.1.1.7 (First described in England)
- Beta B.1.351 (First described in South Africa)
- Gamma P.1 (First described in Brazil)
- Delta B.1.617.2 (First described in India)

Source: gisaid.org

A matter of time before emerging variants escape immunity from current vaccines based on the original Wuhan WA1/2020 Spike sequence?

Commercial opportunities

2nd generation rapid vaccine generated matching novel VoC

 Vaccibody's RBD vaccine may offer rapid and strong levels of neutralizing antibody responses specifically targeting novel VoC

3rd generation universal broadly protective T cell vaccine

- Increasing evidence of the importance of broad T cell responses against COVID-19 also offering longterm memory responses with limited sensitivity to viral mutations
- Vaccibody aims to boost and broaden the most clinically relevant and conserved T cell responses against multiple SARS-CoV-2 epitopes identified by Adaptive Biotechnologies
- Aim to induce long-lasting protective immunity across all population groups and across current and future variants

Therapeutic vaccines

• Rapid onset of broad T cell-based immunity opens potential for safe, effective, easy-to-administer drug to reduce severity and clear infection

Adaptive is the partner of choice

Adaptive applied its immune medicine platform to identify and validate immuno-dominant T-cell epitope hotspots

Sequence information using samples from more than 6500 patients impacted by COVID-19 plus 150,000+ SARS-CoV-2 specific TCR-antigen pairs across the viral genome

Launched T-Detect[™] COVID, which is the first-in-class T-cell-based clinical test for Covid-19 with FDA Emergency Use Authorization

Agenda

Collaboration and license agreement with Adaptive Biotechnologies

Adaptive Biotechnologies' technology platform

- VB10.COV2 Vaccibody's SARS-CoV-2 vaccine program
- VB10.COV2 Phase I trial preparations
- VB10.NEO N-02 update, outlook and Q&A

2

3

4

5

Adaptive Biotechnologies – Powering the Age of Immune Medicine

Translating the genetics of the adaptive immune system into clinical products to diagnose and treat disease

At a Glance

- Founded in 2009
- Nasdaq listed (ADPT)
- Commercial stage biotechnology company
- 650+ employees
- 600+ publications to date
- 58B+ immune receptors characterized to date in our proprietary clinical immunomics database

Uniquely positioned as a clinical product development engine

We use the immune system as the source-code for immune medicine

Multiple opportunities for growth

Target discovery to inform vaccine design and development

Three data sources to develop an accurate T-cell signature

Map TCRs to 1000s of antigens

Identify query antigens (peptides or transgene) of interest Neoantigens, tumor-associated, viral or autoimmune antigens

Incubate antigens with immune cells Antigen specificities are determined based on peptide pool design

Sort T cells by marker of interest pMHC-TCR interactions induce activation marker expression

Match T cell clones to specific antigens Based on the presence of specific sequences in designated pools

Structure & genome of SARS-CoV-2

Adapted from Alanagreh L, et al. Pathogens. 2020;9(5):331. doi:10.3390/pathogens9050331.

Emergence of SARS-CoV-2 variants has made it even more important to understand how the virus interacts with the adaptive immune system

Comparing T-cell responses to neutralizing antibody responses in SARS-CoV-2 variants

- Follicular helper T cells and CD4+ T cells help establish the B-cell and antibody response, including nAb.
- Evidence suggests that relatively few mutations allow SARS-CoV-2 variants to escape the nAb response, but the T-cell response to SARS-CoV-2 variants remains consistently high.

Validation of SARS-CoV-2 specific T-cell epitopes to inform vaccine design

Three data sources to develop an accurate T-cell signature

Map TCRs to SARS-CoV-2 antigens

- Library of 150,000+ SARS-CoV-2 specific TCR-antigen pairs across virus genome from over a hundred patient samples
- Validate SARS-CoV-2 specific of immuno-dominant T-cell epitope 'hotspots'
- Prioritization of epitopes are used to inform vaccine design

Infectious Diseases – COVID population-level approach to identify and validate public, diagnostic T-cell receptors

Train model on large case/control cohorts, identify unique TCR signals to make model, test in other studies Application in Vo', Italy cohort (~2500 subjects) demonstrates 97.4% sensitivity and 99% specificity

Vaccibody's DNA-based APC targeting vaccine creates rapid, strong and broad immune responses

Vacibody Platform Attributes

- Dendritic cells (DCs) / APC targeting (MIP1a)
 contributes to dominant CD8 T-cell responses
- Faster production times and better scaling vs.
 RNA or protein
- DNA thermal stability obviates cold chain distribution with more favorable COGS
- Lower production, manufacturing costs
- Needle-free, painless administration

Antigen selection, vaccine design and immune monitoring

Adaptive mapped TCRs to SARS-CoV-2 antigens at scale to inform the design and development of the second- generation vaccine by Vaccibody

- Validated T-cell epitopes cover multiple SARS-CoV-2 antigens and HLAs
- Include naturally processed, presented and immunogenic epitopes
- Encode immunodominant T cell epitopes
- Inform the design of Vaccibody's second generation COVID-19 vaccine

Agenda

Collaboration and license agreement with Adaptive Biotechnologies

Adaptive Biotechnologies' technology platform

VB10.COV2 - Vaccibody's SARS-CoV2 vaccine program

VB10.COV2 - Phase I trial preparations

VB10.NEO N-02 update, outlook and Q&A

vaccibody

2

3

4

5

Vaccibody's SARS-CoV2 vaccines

• Exploit the protective role of both the humoral and cellular immune system

VB2129

- VoC RBD candidate

Non-clinical studies

VB2129 induces rapid, strong and persistent antibody responses

Rapid, strong and long-lasting antibody responses induced after vaccination with the B1.351 RBD specific vaccine

- Rapid: Ab detected already day 7 after one vaccination even with low dose (1µg)
- Strong responses: >10⁶ endpoint titer
- Confirming the results achieved with the previously published Vaccibody RBD vaccine against Wuhan WA1/2020

**(p<0.01), Tukey's multiple comparisons test

vaccibody

Non-Confidential

VB2129 induces potent virus neutralization responses across VoC

Beta – South African VoC Pseudovirus neutralization assay 105-One dose Two doses 104 *<u>*</u>* 0<u>5</u>10³ • **—** ٠ ٠ . 10² ٠ ٠ LOD . . ٠ 10 -25¹⁹,1+ PB5,2+ 2.549.14 2549.1+ 1^{19.} 1^{19.2†} 2549.27 6.25119. 22.5119. 27 285, 1+ VB2129

vaccibody

105

Wuhan

Alpha

UK VoC

Gamma

VB2210 - T-cell candidate

Non-clinical studies

Strong immunogenicity of VB2210 in 3 mouse models

- VB2210 induces strong responses post 1 vaccination against HLA specific epitopes in humanized HLA tg mice
- The strong T cell responses observed in two additional mice models show the breadth of the T cell response independent of MHC selection

Preclinical summary

- VB2129 and VB2210 are two DNA vaccines designed using Vaccibody's modular and APC targeted technology
- VB2210 contains T cell epitopes validated by Adaptive Biotechnologies
- Preclinical data confirm induction of strong T cell responses against multiple SARS-CoV-2 antigens in several mouse models
- VB2129 contains the RBD domain of the South African VoC B1.351
- Preclinical data demonstrate induction of rapid, strong and persistent neutralizing antibody responses in animal models by VB2129

Product Supply for Phase 1/2 trial

- Vaccibody is using an already established manufacturing process to ensure rapid supply of clinical trial material for the VB-D-01 trial
- Manufacturing is progressing as planned for both COV-2 candidates
- Initial stability data indicate long-term thermal stability of the VB10.COV2 candidate(s).
 - 4 weeks at 37°C,
 - 10 weeks at 25°C
 - More than 52 weeks at 2-8°C

Stability of VB10.COV2

- Stability testing of VB10.COV2 under stressed conditions at 37°C for 4 weeks (T0, T1, T2, T3 and T4)
- Stability indicating parameter is the monomeric supercoiled topology

Agenda

- Collaboration and license agreement with Adaptive Biotechnologies
- Adaptive Biotechnologies' technology platform
- VB10.COV2 Vaccibody's SARS-CoV-2 vaccine program
- VB10.COV2 Phase I trial preparations
- VB10.NEO N-02 update, outlook and Q&A

2

3

4

5

Two-armed phase 1/2 trial to evaluate second-and third generation SARS CoV-2 virus vaccine candidates

- Planned initiation of an open label dose-escalation and dose expansion trial
- Objective: evaluate safety, reactogenicity and immunogenicity of the two candidates
- Submission of CTA application is planned for Q3 2021
- As a result of frequent consultations and meeting with the Norwegian Medicines Agency, a fast approval is expected
- First subject dosed is planned for early Q4 2021
- Up to 200 subjects are planned to participate
- The trial will run in Norway at Oslo University Hospital and Haukeland University Hospital, Bergen

VB-D-01 investigating two candidates as prime in vaccine naive and a booster in previously vaccinated subjects

A Phase 1/2, open label, dose escalation trial to determine safety and immunogenicity of two SARS CoV-2 virus vaccine candidates (C1) and (C2) in healthy adult volunteers

Agenda

- Collaboration and license agreement with Adaptive Biotechnologies
- Adaptive Biotechnologies' technology platform
- VB10.COV2 Vaccibody's SARS-CoV-2 vaccine program
- VB10.COV2 Phase I trial preparations
- VB10.NEO N-02 update, outlook and Q&A

2

3

4

5

Pipeline

Broad oncology coverage and strong partnerships. Leveraging platform within infectious diseases

Program	Indication	Discovery	Preclinical	Phase I	Phase II	Phase III	Partnerships
Oncology							
Individualized							
VB10.NEO	Melanoma, lung, bladder, renal, head & neck	\bigcirc					Genentech ¹ Nektar ² Therapeutics ²
VB10.NEO	Locally advanced and metastatic tumors	\bigcirc					Genentech ^{1,3}
Off the shelf							
VB10.16	HPV16 positive cervical cancer ⁴	\bigcirc					
Undisclosed	Undisclosed targets within shared antigens						
Infectious disease							
VB10.COV2	SARS-CoV-2	\bigcirc	\bigcirc		\bigcirc	\bigcirc	Adaptive Biotechnologies ⁵
Undisclosed	Undisclosed targets within infectious disease						

1) Genentech has an exclusive license to VB10.NEO; 2) Collaboration with Nektar Therapeutics on combining NKTR-214 (bempegaldesleukin) with VB10.NEO in trial arm 5B (SCCHN); 3) In combination with atezolizumab; 4) Roche supplies atezolizumab; 5) SARS-CoV-2 T cell epitopes excl. licensed from Adaptive

Strong financial foundation for achieving our vision

- By end of the 1st quarter of 2021, Vaccibody had a cash position of USD 179.7 million
- Vaccibody has initiated a process to explore a possible listing on the Nasdaq (US)

VB10.NEO: Exclusively licensed to Genentech

Global, oncology collaboration between Vaccibody and Genentech to develop individualized neoantigen cancer vaccines across multiple tumor types

vaccibody

Conduct clinical Phase1b trial combining VB10.NEO with *atezolizumab*

 \rightarrow

Responsible, and bear all costs, for all further clinical, regulatory, manufacturing and commercialization activities for VB10.NEO

VB10.NEO: Vaccibody's individualized cancer vaccine - potentially best in class

Targeting antigen presenting cell

Proprietary neoantigen selection method

Encouraging immunogenicity and clinical data Phase I/IIa in >50 patients with melanoma, NSCLC, SCCHN, RCC and urothelial cancer

100% manufacturing success rate Flexible, rapid and cost-effective manufacturing of targeted VB DNA vaccine

Well tolerated

VB10.NEO

Fully personalized vaccine against the patient's individual cancer specific mutations

vaccibody

VB N-02: Dose escalation trial of VB10.NEO & atezolizumab (Tecentriq[®])

Combining VB10.NEO & atezolizumab in the individualized treatment of solid tumors

VB N-01 - combining VB10.NEO & Checkpoint inhibitor (CPI), preliminary data show encouraging immunogenicity with neoepitope-specific CD8 dominating immune responses in patients with clinical response

Last patient first dose Feb 2021

VB N-02 - combining VB10.NEO & atezolizumab in the treatment of solid tumors, further exploring the potential of the individualized neoantigen treatment

VB N-02: VB10.NEO & atezolizumab (Tecentriq[®]) treatment in various solid tumor indications

Trial initiated and first US site activated

Protocol title: A phase 1B, open-label, dose-escalation trial of the safety of and antigen-specific immune responses elicited by VB10.NEO in combination with atezolizumab in patients with locally advanced and metastatic tumors

- Collaboration partner: Genentech
- Site initiations started to support enrollment of patients as planned this year
- 40 patients planned to be enrolled at 10 sites across three countries: USA, Germany and Spain
- IND* and IRB** approval achieved for first US site
- CTA*** submissions sent in for Germany and Spain. Approvals expected H2 2021
- To be posted at <u>www.clinicaltrials.gov</u> in July 2021

*IND = Investigational New Drug Application **IRB = Institutional Review Board ***CTA = Clinical Trial Application

VB N-02 Objectives, Endpoints and Trial Design

- Primary objective: Safety and tolerability of VB10.NEO in combination with atezolizumab
- Biomarkers: Number and magnitude of antigen-specific T-cell responses
- Efficacy: ORR (Complete and Partial Response), DOR, PFS, OS

Accomplishments and news flow guidance

Selected accomplishments

•

July 2020

First patient dosed in VB C-02 Phase II trial of VB10.16 in combination with Roche's atezolizumab in advanced cervical cancer

October 2020

Worldwide, exclusive collaboration with Genentech on VB10.NEO

December 2020

Launch of Infectious Disease strategy

July 2021:

VB10.NEO - initiation of VB N-02, Phase Ib trial VB10.CoV2 - Adaptive Biotechnologies - exclusive T cell epitope agreement, and pre-clinical update

News flow guidance

2H 2021:

VB10.16 - fully enrolled VB C-02 trial in cervical cancer

2H 2021:

VB10.16 - interim clinical data for first patients from VB C-02 trial in cervical cancer

2H 2021:

Pre-clinical update from the infectious disease initiative

Contact: CEO Michael Engsig Vaccibody AS Cell: +45 6173 1509 mengsig@vaccibody.com

vaccibody

Non-Confidential

vaccibody

Non-Confidential